[STAGE MASTER 2 ] - FUTURE - Framework for Uncertainty-aware and Trustworthy Unified Reasoning in Enabled CPS

CESI Aix-En-Provence
Aix-en-Provence

Établissement recruteur

Site web :

Lab Presentation

CESI LINEACT (UR 7527), Laboratory for Digital Innovation for Businesses and Learning to Support the Competitiveness of Territories, anticipates and accompanies the technological mutations of sectors and services related to industry and construction. The historical proximity of CESI with companies is a determining element for our research activities. It has led us to focus our efforts on applied research close to companies and in partnership with them. A human-centered approach coupled with the use of technologies, as well as territorial networking and links with training, have enabled the construction of cross-cutting research; it puts humans, their needs and their uses, at the center of its issues and addresses the technological angle through these contributions. Its research is organized according to two interdisciplinary scientific teams and several application areas:

  • Team 1 "Learning and Innovating" mainly concerns Cognitive Sciences, Social Sciences and Management Sciences, Training Techniques and those of Innovation. The main scientific objectives are the understanding of the effects of the environment, and more particularly of situations instrumented by technical objects (platforms, prototyping workshops, immersive systems...) on learning, creativity and innovation processes
  • Team 2 "Engineering and Digital Tools" mainly concerns Digital Sciences and Engineering. The main scientific objectives focus on modeling, simulation, optimization and data analysis of cyber physical systems. Research work also focuses on decision support tools and on the study of human-system interactions in particular through digital twins coupled with virtual or augmented environments.

These two teams develop and cross their research in application areas such as:

  • Industry 5.0,
  • Construction 4.0 and Sustainable City,
  • Digital Services.

Areas supported by research platforms, mainly that in Rouen dedicated to Factory 5.0 and those in Nanterre dedicated to Factory 5.0 and Construction 4.0.

Link to the research axes of the research team involved

FUTURE project aims to enhance techniques developed in Resilient and Safe Systems (R2S) within team 2 of CESI LINEACT.

Description

Scientific fields: Artificial Intelligence, Trustworthy AI, Uncertainty Modelling, System Engineering, Information Fusion.

Keywords: Artificial Intelligence, Belief Functions Theory, Cyber-Physical Systems, Smart building, Data Fusion, Heterogenuous Sources.

Abstract

Cyber-Physical Systems (CPS) are increasingly deployed in safety-critical settings such as manufacturing, robotics, autonomous infrastructures, and intelligent buildings [1]. Smart Building systems, in particular, rely on dense networks of heterogeneous sensors to monitor energy consumption, indoor environmental quality, and occupant comfort. These systems must operate under heterogeneous data sources, incomplete information, sensor unreliability, and unpredictable disturbances [2]. Traditional AI-based decision systems provide deterministic outputs, often without expressing confidence levels or handling conflicting evidence [3].

FUTURE project aims to develop an uncertainty-aware and trust-oriented decision-making framework combining uncertainty modelling, AI-based predictions, and Dempster–Shafer theory. By integrating belief-function reasoning with multi-source evidence fusion, FUTURE enhances the resilience of CPS decision pipelines.

A realistic CPS scenario specifically, a Smart Building environment will serve as the experimental validation context, leveraging sensor data to evaluate uncertainty, reliability, and evidence-based decision performance.

Work Program/ Objectives :

The work program of FUTURE is structured around eight major tasks, each corresponding to a key component of the proposed uncertainty-aware decision-making framework. These tasks form a coherent pipeline, from data importation to experimental validation, and are described below.

1. Data Importation – As a first step, we identify a publicly accessible and representative dataset that reflects real-world smart-building sensor deployments. Such datasets must capture multiple sensing modalities relevant to CPS applications, enabling the evaluation of uncertainty-aware learning, reliability assessment, and evidence fusion in realistic operating conditions. For the FUTURE project, the selected test dataset is the CU-BEMS Smart Building Energy and IAQ Data 1 , which provides multi-sensor recordings of energy consumption, indoor air quality, and environmental variables across an operational smart- building environment.

2. Data Cleaning, Normalisation, and Harmonisation – Preprocess the raw data through noise filtering, unit conversion, timestamp alignment, and signal normalisation.

3. Uncertainty Modeling of Data – Estimate the data uncertainty of multi- heterogeneous sources.

4. Source-Aware Categorisation of Data – Organise the processed data into meaningful categories.

5. Development of an Uncertainty-Aware AI Model – Implement and train uncertain Neural Network or an evidential deep learning model capable to produce both predictions and associated uncertainty estimates.

6. Transformation of Model Outputs into Belief Masses – Convert the outputs of the AI model into to representative class-specific supports together with residual ignorance caused by uncertainty.

7. Evidence Fusion – Combine belief masses using different composition strategies depending the detected level of conflict.

8. Decision-Making under Uncertainty – Evaluate how uncertainty and conflicting evidence influence the robustness of the final decision.

Previous Work in the Laboratory

FUTURE builds upon my earlier research contributions at CESI [2]. It represents a first attempt to formally integrate uncertainty modelling with previous work, particularly the research conducted on distributed and federated learning [4]. In this direction, FUTURE extends and strengthens the decision-making techniques previously developed within federated learning frameworks by incorporating belief reasoning and uncertainty- aware mechanisms.

1 data

Expected Scientific/Technical Output :

Scientific Contributions

  • A unified uncertainty-aware decision framework for CPS.
  • A novel integration of belief-function theory.
  • Experimental analysis of DS-based fusion in real CPS environments, particularly in Smart Building systems.
  • A reproducible methodology supporting trustworthy AI research.
  • A scientific research report.

Technical Contributions :

  • A fully implemented Python prototype of FUTURE .
  • A validated CPS case study.

References:

1. Samir Ouchani. Secure and Reliable Smart Cyber-Physical Systems . 2022. HDR Thesis, CNAM Paris, France.

2. Safa Ben Ayed, Malika Ben Khalifa, and Samir Ouchani. Modeling distributed and flexible PHM framework based on the belief function theory. In Artificial Intelligence Applications and Innovations - 20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part I , volume 711, pages 160–173. Springer, 2024.

3. Md Mehedi Hasan, Moloud Abdar, Abbas Khosravi, Uwe Aickelin, Pietro Lio, Ibrahim Hossain, Ashikur Rahman, and Saeid Nahavandi. Survey on leveraging uncertainty estimation towards trustworthy deep neural networks: The case of reject option and post-training processing. ACM Comput. Surv. , 57(9), 2025.

4. Souhila Badra Guendouzi, Samir Ouchani, Hiba Al Assaad, and Madeleine El-Zaher. Ensuring the federation correctness: Formal verification of federated learning in industrial cyber-physical systems. Future Gener. Comput. Syst. , 166:107675, 2025.

Profil

Skills :

The candidate should possess a Master student or equivalent in Software Engineering or Computer Science. She/He should have some knowledge and experience in a number of the following points:

Scientic skills

  • Probability, uncertainty modelling, and evidence-based reasoning.
  • Fundamentals of machine learning and classification.
  • Understanding of CPS architectures.

Technical Skills

  • Programming environments.
  • Python programming (NumPy, SciPy, Pandas).
  • PyTorch or TensorFlow for deep learning.
  • Dempster–Shafer libraries (e.g., pyds ).
  • Data cleaning techniques.
  • Git version control.

Interpersonal Skills

  • Analytical thinking and autonomy.
  • Problem-solving.
  • Ability to work in interdisciplinary teams.
  • Scientific communication and reporting.

Prise de fonction

Dès que possible

Publié le 2025-12-12

Emplois Recommandés

RESPONSABLE CELLULE DES MARCHES

Aix-en-Provence

Navigation Pré-entête ~ Nos sites Navigation principale Actualités Expertises La FHF En régions Emploi Annuaire Accès établissement adhérent Fil d'Ariane #RESPONSABLE…

Voir les Détails
Publié le 2025-10-24

Responsable MOA travaux - Foncière logistique H/F

ALENTA
Aix-en-Provence

Le poste : Rattaché(e) au directeur MOA et au sein d'une équipe, appuyé(e) par les services internes, vos missions portent sur la conduite d'opérations d'investissements immobiliers (CAPEX ou MOA …

Voir les Détails
Publié le 2026-01-22

Responsable étude de prix H/F

Hays France
Aix-en-Provence

Nous accompagnons notre client, PME spécialisée dans les travaux de Second Œuvre, dans le recrutement d'un Directeur d'Agence pour piloter et développer son site basé à Aix-en-Provence. Ce poste stra…

Voir les Détails
Publié le 2026-01-20

Chef de mission en Cabinet d'expertise comptable

Fed Finance
Aix-en-Provence

En tant que Chef de Mission, vous devenez le référent d’un portefeuille clients varié tout en accompagnant les collaborateurs dans la gestion de leurs dossiers. Votre rôle sera à la fois technique…

Voir les Détails
Publié le 2025-12-15

Content Editor - French Speaker (m/f/d)

Voyage Privé
Aix-en-Provence

✨ About Voyage Privé  Born in France in 2006, Voyage Privé has grown from an ambitious startup into Europe’s leading travel tech platform. Operating across 9 markets with tens of millions of use…

Voir les Détails
Publié le 2026-02-06

2443- TISF (H/F/X)

Croix-Rouge
Aix-en-Provence

2443- TISF (H/F/X) CRF11867 La Croix-Rouge française recherche: TISF(H/F/X) En CDI temps partiel Lieu de travail : AIX EN PROVENCE (13090) Au sein du centre d'hébergement et réinsertion sociale , …

Voir les Détails
Publié le 2026-01-17

Conseiller Commercial Agence H/F

Harmonie Mutuelle
Aix-en-Provence

Poste ouvert aux personnes en situation de handicap. Le poste : En tant que Conseiller(e) Commercial(e) à l’Agence de Aix-en-Provence , vous jouez un rôle essentiel dans l’accompagnement de nos …

Voir les Détails
Publié le 2026-01-30

Neurologue

Aix-en-Provence

Navigation Pré-entête ~ Nos sites Navigation principale Actualités Expertises La FHF En régions Emploi Annuaire Accès établissement adhérent Fil d'Ariane #Neurologue …

Voir les Détails
Publié le 2025-11-13

Chargé.e des admissions et des placements - ESG Aix-en-Provence

Galileo Global Education
Aix-en-Provence

Secteur Éducation et formation Description de l'entreprise/de l'organisme Galileo Global Education est le leader mondial de l'enseignement supérieur privé avec un réseau de 108 campus réparti…

Voir les Détails
Publié le 2026-01-30